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Abstract

This study deals with a nonlinear rate-dependent stick-slip phenomenon which may occur at a rubber-to-metal
interface. This type of nonlinear behavior has been observed at the interface between the guide roller and the rail of a
typical elevator in motion. The main objectives of the present study are (1) to show the significant effect of the non-
linearity, (2) to propose its mathematical model with a two-stage parameter estimation method, and (3) to suggest an
efficient experimental technique for the parameter estimation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The motivation of the present work was to predict correctly the lateral vibration of an elevator in
motion. The main source of the lateral vibration is the unevenness of guide rails. To reduce the vibration
transmission to the elevator, optimal design of a guide roller assembly is most important. However, this
should be preceded by realistic modeling of the vibration isolation mechanism between the guide roller
systems and the rails. Although a typical guide roller system is supported by springs, a simple linear spring-
mass-damper model may not be appropriate. Fig. 1 shows a schematic diagram of a guide roller system in
contact with the guide rail, where the z axis is the moving direction of an elevator. Typical elevators have
four guide roller systems and the plane view of a guide roller system is shown in Fig. 2.

Although research reports on the elevator vibration problems are rare, Miwa (1967) and Sissala et al.
(1985) have modeled the guide roller system by a simple mass-spring-damper model. As humans are most
susceptible to vibrations at a low frequency range (say, frequencies below 10 Hz: see ISO 2631, 1978) and
the guide roller systems are most effective in low-frequency vibration isolation, the correct prediction of the
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Fig. 1. A schematic diagram of a guide roller system and guide rails.

dynamic behavior of the guide rollers has been an important issue. Recent experiments (Kim and Jung,
1996) on the lateral vibrations of some elevators have exhibited some behavior that cannot be explained by
the simple linear model employed by Miwa (1967) and Sissala et al. (1985). Therefore, a new nonlinear
model that can predict the experimental findings needs to be developed.

The first part of this work is to report some experimental evidence for significant nonlinear behavior
observed at a rubber-to-metal interface between the roller and the rail. It is shown that slipping can take
place between the roller and the rail, when relative motion between them exceeds a certain limit. In ad-
dition, hysteretic damping effects of the roller tire cannot be neglected (most roller tires are made of rubber).
Furthermore, rate dependence of the nonlinear behavior also needs to be considered. In order to account
for this complicated behavior, an appropriate nonlinear model needs to be developed; this model should be
able to describe stick-slip, and rate-dependent hysteretic phenomena.

Perhaps, the most widely used nonlinear model is the Bouc—Wen model (Bouc, 1967; Wen, 1976). The
model can be used to predict various hardening or softening, and smoothly varying or nearly bilinear
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Fig. 2. A plane view of a guide roller system and guide rails.

hysteretic behavior. The performance of this model has been investigated by Baber and Wen (1981), Sues
et al. (1988), and Wong et al. (1994a,b). The successful applications of this model are also reported in many
situations (Michalakis and Tadibakhsh, 1985; Fertis and Lee, 1992; Ni et al., 1998). However, these in-
vestigations are restricted to rate-independent hysteretic systems in which velocity-dependent damping
effects are nearly negligible. On the other hand, Tinker and Cutchins (1992, 1994) suggested a hysteretic
model combined with the Coulomb friction and velocity-dependent damping in order to deal with the rate-
dependent damping behavior of a wire cable isolator. However, an integer for a power of a velocity term is
pre-selected in their analysis. Vinogradov and Pivovarov (1986) investigated a rate-dependent hysteretic
model for vibrating cables, but no material damping was considered.

As the existing nonlinear models are not suitable to predict the complicated nonlinear phenomena oc-
curring at the interface of the guide roller and the rail, a modified Bouc—Wen model is proposed in this
work. In the present modification, a rate-dependent damping model is added to the Bouc—Wen model.
However, the simple addition of two models does not give satisfactory results. Subsequently, we propose a
new approach in which different force—velocity laws for each model are used and the restoring forces of
each model are combined to obtain the total system restoring force. The parameters of the present modified
Bouc—Wen model are estimated by employing a multi-stage estimate procedure (Yar and Hammond, 1987;
Loh and Chung, 1993). Although other estimate methods (e.g., Sues et al., 1988; Chassiakos et al., 1998)
may be employed, the multi-stage parameter estimation technique is more effective, when a relatively noise-
free low-frequency system response is available. The present application of a two-stage parameter esti-
mation method with the Levenberg-Marquardt method of nonlinear optimization (Fletcher, 1980) gives
satisfactory results. To develop a realistic nonlinear model, we have also suggested a simple, yet very useful
experimental procedure which can handle the actual excitation source such as the unevenness of a rail
profile.

2. Nonlinear phenomena

Experimental results carried out for the guide roller system which is in contact with the guide roller are
presented in this section. The experimental results will clearly show the nonlinear force—displacement be-
havior, which cannot be predicted by the simple linear model used in Miwa (1967) and Sissala et al. (1985).
This section consists of static and dynamic experimental results.
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2.1. Stick-slip and hysteresis

Fig. 3 shows the static experimental setup. The rail specimen is excited by a ball-screw mechanism.
The reaction force by the roller system and the rail specimen displacement are measured by a load cell and
a dial gage, respectively. A relation between the measured force and displacement is plotted in Fig. 4 for
ka = kg = 68.6 kN/m, where k denotes the spring constant. Note that the stiffness of the guide roller system
is 154.1 kN/m when the rail displacement is small, but it suddenly becomes the stiffness of spring A alone
beyond a certain limit (marked by T in Fig. 4). When the rail displacement is small, the shearing stiffness of
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Fig. 3. An experimental setup for static analysis.
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Fig. 4. Force-displacement curve from static measurement.
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the tire of roller B contributes to the total stiffness of the roller system. However, slipping takes place
between the tires of roller B and the rail, when the displacement increases beyond T.

When displacement unloading occurs, the tires of roller B stick again to the rail so that the corre-
sponding slope in the force-displacement curve in Fig. 4 is close to the initial stiffness. If loaded again, the
curve returns to C and then moves up with the slope of the stiffness of k4. It is observed that the hysteresis
loop during the unloading and loading is not negligible. Therefore, this material hysteresis needs to be
taken into account in developing a realistic nonlinear guide roller system model. The area enclosed by the
loop represents the amount of dissipated vibratory energy. To the authors’ knowledge, these kinds of
nonlinear stick-slip hysteresis phenomena of an elevator guide roller system are reported here first. The
mathematical modeling technique of the nonlinear phenomena will be discussed later.

Before discussing the rate-dependent nature of the system response, it is also remarked that the pre-
compression applied to spring B affects significantly the onset of slipping as shown in Fig. 5. The magnitude
of the pre-load is equal to kgd, where d is the amount of the initial deformation of spring B. For d = 1.6,
2.6, and 3.6 mm, the corresponding pre-loads are 117, 196, and 274 N, respectively. Fig. 5 clearly shows the
delay in the onset of slipping as the magnitude of d increases. As long as the magnitude of the pre-load
remains the same, the spring stiffness does not affect the onset of slipping. Fig. 6 shows the force-
displacement curves for varying values of the spring stiffness (ko = kg) while the pre-load is set equal to
196 N.

Before discussing the rate-dependent phenomena that can be observed in dynamic experiments, it is now
obvious that the existing linear model cannot describe the complicated nonlinear stick-slip, hysteretic
phenomena.
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Fig. 5. The effects of the pre-load on Spring B. (The pre-load is controlled by the initial pre-deformation d of spring B.)



1420 H. Wee et al. | International Journal of Solids and Structures 38 (2001) 1415-1431

450 T T T

400

350

N nN W

o a o

o o o
T T T

Restoring force (N)

-

(6]

o
T

134.3 kN/m
—— 68.6 kN/m ]
---  225kN/m

100

50

0 0.5 1 1.5 2 25 3 3.5 4
Displacement (mm)

Fig. 6. The effects of the spring stiffness for the same pre-load. (The values in the figure are used for both spring A and spring B.)
2.2. Rate-dependent phenomena

The static experimental results give some insight into the nonlinear behavior of the guide roller system.
However, the correct model characterizing the nonlinearity should be based on dynamic experiments, if the
system response is rate-dependent. To perform dynamic experiments, the rail specimen is harmonically
excited with varying frequencies. Obviously, slight modifications of the experimental setup shown in Fig. 3
are made; an AC servo motor is connected to the end of the ball screw in order to control the rail dis-
placement precisely. An accelerometer is mounted on the rail specimen while the load cell is replaced by a
force transducer. If necessary, the measured acceleration is integrated to obtain the time history of dis-
placement.

Fig. 7 shows the force—displacement curves by harmonic displacement excitations at 3 Hz: (a) with all
rollers installed and (b) with only two side rollers (roller B) installed, respectively. Not only hysteresis but
also stick-slip phenomena, found in static experiments, are observed in the dynamic experiments. The area
enclosed by a complete loop denotes the energy dissipated during a cycle. Comparing Fig. 7 (a) and (b), one
can see that the threshold force for slipping is the same regardless of the presence of roller A. This re-
confirms that slipping phenomena take place between the tire of roller B and the rail specimen and that the
spring stiffness of roller A has nothing to do with the nonlinear phenomena.

Fig. 8 shows nonlinear force—displacement curves at different harmonic displacement excitations
(ka = kg = 68.6 kN/m, d (pre-compression) = 1.6 mm). As the spring attached to roller A works only as a
linear spring, only side rollers (roller B) are attached in obtaining the results shown in Fig. 8. The excitation
frequencies are varied from 0.5 to 9 Hz for different displacement excitation amplitudes.

When the maximum displacements are fixed, the force level corresponding to the slip threshold increases
as the excitation frequency increases. Therefore, the loop shape and the area enclosed by it change as
the frequency changes; the force—displacement curve for the roller guide system is rate dependent. When the
excitation frequency exceeds 5 Hz, however, the force—displacement curves tend to be insensitive to the
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Fig. 7. Force—displacement curve: (a) with all rollers installed and (b) with only two side rollers (roller B) installed.
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Fig. 8. Force-displacement curves at varying excitation frequencies with two different maximum displacement excitation levels (xyax)-

excitation frequency. (Dynamic behavior below 10 Hz is of a major interest in the present investigation.) It
is also observed that the shapes of the force—displacement curves are quite different depending on the
maximum excitation displacement level x,.x, which is typical of nonlinear behavior.

To summarize the findings from the dynamic experiments, we emphasize again the significant nonlinear
behavior of the guide roller system; the existing linear analysis is not appropriate unless the maximum
excitation displacement level is very low. We also address that the nonlinearity of the guide roller system is
characterized by the coupled mechanism of stick-slip, hysteresis and rate dependence. In what follows, we
propose a model that can describe the complicated nonlinearity quite satisfactorily.
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3. Nonlinear model
3.1. The Bouc—Wen model

The result in Fig. 7 has confirmed that the restoring force in the system consists of the linear part by the
spring of roller A and the nonlinear part from the interaction between the tires of roller B and the guide rail.
Based on this observation, the following model can be used to describe the mechanics of the guide roller
system:

S (@) = kox(t) + kyz(2).- (1)

In Eq. (1), the total restoring force is denoted by f(¢) and the nonlinear restoring force is denoted by z(z).
The excitation displacement due to the rail unevenness is denoted by x(¢). No distinction between k and kg
is made as the same spring constant is used for both roller A and roller B, and thus, the spring constant is
simply designated by k. The constant £, is used to scale the nonlinear restoring force, so that z(¢) has the
dimension of displacement.

As the first attempt to model the nonlinear behavior, we have employed the Bouc—Wen model without
the consideration of stiffness/strength degradation as in Baber and Wen (1981). The Bouc-Wen model
(Bouc, 1967; Wen, 1976) takes the following form:

£(t) = ock(r) = Bl (0) 12(0)|"2(0) — pi(0) ()", (2)

where (-) denotes the time derivative and o, §,7 and n are the model parameters to be determined. The
parameter estimation scheme to determine o, § and y including the exponent » will be given in detail in
Section 3.3, but the estimated values of the parameters are given in Table 1.

Fig. 10 shows that the theoretical curves agree quite well with the experimental curves in general, but
serious disagreements between the two curves near the region marked by “C” are observed. This dis-
crepancy near C is due to the incapability of the Bouc—Wen model to describe the velocity-dependent
material damping phenomenon of the tire material. However, this velocity nonlinearity cannot be ignored
when system dynamic responses are of interest. Therefore, some modifications of the Bouc—Wen model are
necessary, which is discussed in Section 3.2.

3.2. Generalized Bouc—Wen model

In order to consider the effects of the rate-dependent nonlinearity, we propose to incorporate the mth-
power velocity damping model in the Bouc-Wen model considered in Eq. (2). The restoring force of
this model is usually expressed as c|x(¢)|" sgn(x(¢)). Although the power m can take any positive value
(Mottershead and Stanway, 1986), some previous approaches (Tinker and Cutchins, 1992, 1994) use an
integer value for the exponent m and thus only the coefficient c is estimated as the model parameter to be
estimated. However, both the coefficient ¢ and the exponent m will be estimated by the two-stage parameter
estimated scheme which will be described later; as will be seen, this will improve the results considerably.

Table 1
Estimated parameters
Excitation frequency (Hz) o p b n
Bouch-Wen 3 0.9933 0.4123 —0.3634 4.3485
model 5 1.0039 0.3872 —0.3353 3.8120
7 1.0049 0.4829 —0.3982 3.1072
9 1.0202 0.4829 —0.3982 3.1072
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In incorporating the mth-power velocity damping model into the Bouc-Wen model, the nonlinear re-
storing force may be written as

z(1) = clx(0)|" sgn(x(1)) + zw (1), 3)

where zpw(¢) designates the Bouc—Wen hysteresis model stated previously in Eq. (2). It is easier to express
the model stated by Eq. (3) taking its time derivative. The advantage is that all the model parameters can
appear explicitly as

£(0) = <o) [ms ()" T seno) + " | 4 aio) = O 20) — OO

)

where 0|x(¢)|/0x(¢) = sgn(x(¢)), 0sgn(x(¢))/0x(¢) = 6(x(¢)). The functions sgn and J represent the signum
and the impulse functions, respectively. On rewriting Eq. (5) becomes

2(t) = €x(1) Imx(0)|" " sgn® ((0)) + [%(O)]"5((0)] + ack(¢) — BE()I(0)[" ' 2(6) = yx()=(0)]". ()

Eq. (5) is the coupled representation of the Bouc—Wen model and the velocity damping model. Instead of
using Eq. (5), we also propose to use an alternative model. In this model, the role of velocity damping term
is regarded as minor modifications of the Bouc—Wen hysteretic model:

Z(t) = ZBw(t) + zMmD (l), (63)
where

Zmw (1) = ok (t) — BIE() zpw (1) 2(2) = 7%(0) |zmw (1), (6b)

2w (1) = ck(0)[mfx(0)]" ™ sgn’ k(1)) + [¥()|"6(x(1))- (6¢)

Note that the time derivatives of zgw(¢) and zyp(#) are not directly coupled. They are updated inde-
pendently at a given time step: The performances and results from Egs. (5) and (6a)—(6¢) will be discussed in
Section 4.

3.3. Parameter estimation

The system identification procedure can be defined as the estimation of the parameter vector
{0} = {¢,m,a, B,p,n}" of the proposed model using the experimentally measured acceleration (i(¢)), ve-
locity (x(¢)), displacement (x(¢)) of the rail specimen and the restoring force (z(¢)). Considering Eq. (5), the
residual function can be defined as

R(r) = cii(6)[ml(r)|"™" sgn’ () + [(0)|"3(x(0))] + ok(t) — () (1) "' 2(1) — (1) =(0)|" = 2(1). ()

The parameter estimation scheme can be divided into two stages:

(1) First stage: At this stage, the exponential powers m, n are fixed to some proper values and the other
parameters are estimated through a least square scheme. Then, the residual function (7) becomes linear with
respect to the remaining parameters:

R(t) = cl\(t) + aly(t) + BL:(2) + 7La(t) — 2(2), (8)
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where
1(8) = 50) (0" sgn’(6(0)) + [+(1)]"0(x(1))),
L(t) = x(1),
L(t) = — %)) =(),

I(t) = = x(0)|=(0)]".
In the case of applying Eq. (6a)—(6c), z(¢) must be replaced by zgw(¢), but zgw(¢) is assumed to be equal to
z(t) initially, as the velocity damping term is not known as yet at this stage.

The error function in the least square is simply written as

B N

E(t) =Y [eh (1) + aly(t) + BI(t) + yla(t) — 2(1)]. (9)
=1

From this stage, one set of parameters {c,m,a, ﬁ,y,n}T is obtained although these parameters may not
match the measured data satisfactorily. As the convergence speed of the nonlinear optimization method
depends heavily on the initial guess of the parameters, the estimated parameter in this step is important for
the next step.

(2) Second stage.: At this second stage, the Levenberg—-Marquardt method is adopted for the estimation
of nonlinear system, which has proved to be more robust and efficient than the widely used Gauss—Newton
method (Fletcher, 1980; Draper and Smith, 1981). The error function at the second stage can be expressed
as

E= XN:R§7 (10)
=1
where N is the number of time samples and R, is defined as
R, =R(t;) (k=1,...,N). (11)
Note that the partial derivative of E with respect to the parameter 6; can be expressed as
N
q,-zg—gi:zzzek%gf (i=1,...,6), (12)

k=1

where {0, 0,, 05, 04, 0s, 06}T = {c,m,ua, ﬁ,y,n}T. The elements of the Jacobian matrix OR;/00; are given in
Appendix A. The Hessian matrix is found as

2 N N 2
O°F ) OR; OR; 2ZR O°R;

Hj=— = —k Tk
/700,00, ~ 4= 00, 0, *20,00,

(13)

k=1

Note that the second term contains R; which approaches to zero as the parameters are close to the true
solutions. Therefore, one may neglect this term when the residual is quite small (Fletcher, 1980). For a given
set of parameters {0}, the Levenberg-Marquardt scheme searches a new set {0}, , systematically from

Oii1 = 0; — [H(0:) + 21) ' q(0:), (14)
where /; is the Levenberg—-Marquardt parameter which controls both the magnitude and direction of the
next iterative step.

3.4. Numerical simulation

In order to verify the validity of the proposed parameter estimation scheme stated in Section 3.3, nu-
merical simulations are performed. To this end, numerical data for ¢ = 0.05, m = 0.6, « = 1.0, f = 0.8,
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y = 0.2, n = 3 are generated. The corresponding curve is similar to those shown in Fig. 8, but is not plotted
explicitly. In generating the numerical data, a periodic displacement excitation x(¢) = x, sin(wyt?) is con-
sidered and the corresponding nonlinear restoring force by Eq. (3) is simulated. The excitation amplitude
and the frequency are denoted by x, and wy, respectively. The generated discrete signals are sampled at a
sufficiently large sampling rate of 200 Hz in order to avoid typical problems in discrete sampling.

To check the robustness of the estimation technique with respect to the noises, the Gaussian noises 7,
and n, are added to the original numerical data x(z;) and z(#):

X(te) = x(t) + elx(t)mi (),  Z(t) = z(t) + €lz(t) In2 (). (15)

In Eq. (15), X(#) and 2(¢;) are considered as the observed data with noise. The Gaussian noises #n;(#;) and
ny () are assumed to have zero mean and variance of unity. Several values of the noise level € are con-
sidered.

Using the initial guess, m = 0.4 and n» = 1, the estimated results by the present approach are given in
Table 2 for various noise levels. The numerical data are taken during 10 cycles of displacement excitation at
3 Hz. (Unless specified otherwise, all the numerical data are taken during 10 cycles.) Table 2 indicates that
the present technique works well even for relatively large noise levels. To evaluate the performance of the
present two-stage estimation technique, several excitation frequencies are considered. The estimated results
given in Table 3 shows that the approach is insensitive to the excitation frequencies.

It is worth examining the effect of initial guesses of m and » on the estimated results. We consider two sets
of initial guesses. In each set, either m or n is fixed while the other varies. The numerical results are
summarized in Table 4 in which the noise level € is taken as 1%. Table 4 shows that the results are not
sensitive to the initial guesses of n, but quite sensitive to the initial guess of m. If m becomes quite larger than
the true value (say, m = 0.8, n = 3), in particular, the estimated result is obsolete. This is because excessive
material damping cannot be compensated by the Bouc—Wen nonlinear effect. Therefore, the use of a good
initial guess of m is important. In practice, several different initial values of m need to be used for satis-
factory results.

Table 2

Estimated parameters with the first-stage initial guess of m = 0.4 and n =1
Noise level (¢) c m o p y n
1.0% 0.0500 0.6001 0.9997 0.7914 0.2081 2.9811
2.0% 0.0502 0.5993 1.0004 0.7939 0.2067 2.9837
5.0% 0.0498 0.6104 1.0014 0.7458 0.2680 2.7803
10.0% 0.0481 0.6198 1.0025 0.6988 0.3002 2.6160
True value 0.0500 0.6000 1.0000 0.8000 0.2000 3.0000

Table 3

The effect of the excitation frequencies on the estimated results *
Excitation frequency (Hz) c m o p b n
1 0.0500 0.6024 0.9977 0.7948 0.2029 2.9578
3 0.0484 0.6115 1.0006 0.7982 0.2028 3.0109
5 0.0492 0.6042 1.0085 0.7867 0.2171 2.9417
7 0.0491 0.6077 0.9913 0.7940 0.2070 2.9996
True Value 0.0500 0.6000 1.0000 0.8000 0.2000 3.0000

#The initial guess: m = 0.4, n = 1, noise level ¢ = 5%.
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Table 4

The effect of initial values of m and n on the estimated results (e = 1%)
Initial value c m o p y n
m n
0.6 1 0.0500 0.6005 0.9996 0.7958 0.2049 2.9820
0.6 2 0.0500 0.6008 0.9992 0.7914 0.2096 2.9799
0.6 5 0.0502 0.5993 1.0008 0.7926 0.2101 2.9872
0.6 8 0.0499 0.6013 0.9986 0.8026 0.1973 2.9903
0.3 3 0.0502 0.5984 0.9981 0.8046 0.1925 3.0208
0.5 3 0.0501 0.5985 1.0027 0.7979 0.2017 3.0021
0.7 3 0.0501 0.6002 0.9994 0.7969 0.2040 2.9953
0.8 3 0.0718 0.6610 0.6803 94.192 —94.175 46.417
True value 0.0500 0.6000 1.0000 0.8000 0.2000 3.0000

4. Experiments and model verification

The dynamic experimental data plotted in Fig. 8 will be used to estimate the model parameters
(¢,m,a, f,7,n), where the two-stage parameter estimation technique proposed in Section 3.3 will be used.
First, we evaluate the performance of the two nonlinear models corresponding to Egs. (5) and (6a)—(6¢) and
select the one which fits better the experimental data in Fig. 8. Once an appropriate nonlinear model is
selected, an experimental data acquisition technique useful for actual multi-frequency excitations will be
suggested.

Fig. 9 shows how accurately the two nonlinear models corresponding to Egs. (5) and (6a)—(6¢) trace the
experimental data at various frequencies. The model parameters are estimated by the two-stage estimation
technique. It is obvious that the model corresponding to Eq. (6a)—(6¢) (will be simply called “the present
model’’) outperforms the model corresponding to Eq. (5). This is because the rate-dependent and stick-slip
nonlinearities are caused by different mechanics; the present model distinguishes rate-dependent nonlin-
earity from stick-slip nonlinearity, whereas the model by Eq. (5) does not. It is worth noting that the Bouc—
Wen model traces the experimental results quite well except the corner C as shown in Fig. 10. Therefore, the
rate-dependent velocity damping term should serve to make minor corrections near C when added to the
Bouc—Wen model.

The estimated parameters for the present model are given in Table 5. Note that the variance of the
estimated values for different excitation frequencies is relatively small. However, it is difficult to find a single
set of parameters that can be used for multi-frequency (or general) excitations. However, typical dis-
placement excitations have multi-frequency components as shown in Fig. 11. Fig. 11(a) shows the time
history of a typical displacement excitation given to a 240 m/min elevator due to the rail unevenness (see
Sissala et al., 1985). Its power spectrum is shown in Fig. 11(b). Fig. 11(b) shows that the power spectrum
decreases monotonically at an approximate rate of —30 dB per decade. Therefore, this spectrum decay rate
should be reflected in the parameter identification of the present nonlinear model.

To reflect the shape of the power spectrum shown in Fig. 11(b), we employ a swept-sinusoidal dis-
placement excitation in which the amplitude of each frequency component varies with the decay rate of
the power spectrum. Fig. 12(a) shows the swept-sinusoidal displacement used in dynamic experiments
and Fig. 12(b) shows the measured restoring force z(¢). Based on the experimental data in Fig. 12(a) and
(b), the parameters of the present model are estimated, which are given in Table 6. Although the esti-
mated values of the parameters in Table 6 are not very close to those given in Table 5, the hysteresis loop
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Fig. 9. The results by the two nonlinear models and experimental data: (a) for 3 Hz excitation, (b) for 5 Hz excitation, (c) for 7 Hz
excitation, and (d) for 9 Hz excitation.

obtained by the present model agrees quite well with the experimentally determined hysteresis loop as

shown in Fig. 12(c).
To check the accuracy of the present model, the following error measure may be used:

~ 12
ZkN:] |zx — Zk|2

ZkN:I |z |2

(16)

z )

where z, and Z; designate the measured and predicted values of the restoring force. Based on the error
measure in Eq. (16), E. is 6.41 %. If the Bouc—Wen model is used, however, E. goes up to 12.44 %. It is clear
that the present model gives quite improved results over the existing Bouc—Wen model.



1428 H. Wee et al. | International Journal of Solids and Structures 38 (2001) 1415-1431
(a) (b)
2|+ + experimental C . 2 |+ experimental ,
analytical analytical
1 4 1 1
€ B
E 0 EO
Ak B -1 1
2+ 7 2+ 4
4 3 2 a 0 1 2 3 4 -4 3 2 a 2 3 4
Displacement (mm) Displacement (mm)
Fig. 10. The results by the Bouc-Wen model: (a) for 3 Hz excitation, and (b) for 7 Hz excitation.
Table 5
Estimated parameters for the present model by Eq. (6a)-(6¢c) (experimental data are used)
Excitation frequency (Hz) c m o p y n
Present model 3 0.0240 0.7973 0.8300 0.1265 —0.0352 5.1540
5 0.0117 0.8973 0.7994 0.0992 —0.0201 4.8739
7 0.0083 0.9165 0.7907 0.1166 —0.0265 4.5509

o
(3]
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@ o
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AN N A
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Fig. 11. Typical displacement input.
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Fig. 12. Results from the multi-frequency parameter estimation: (a) time history of the swept-sinusoidal displacement input to the
system, (b) time history of the experimentally measured restoring force and (c) the hysteresis loop predicted by the present nonlinear
model is compared with the experimentally determined loop.

Table 6

Estimated parameters from multi-frequency excitation data shown in Fig. 12
c m o p y n
0.0055 0.7700 0.9614 1.1226 —0.6724 2.8639

5. Conclusions

The experimental evidence confirming nonlinear rate-dependent stick-slip phenomena in a certain
rubber-to-metal interface is presented. The present generalization of the Bouc—Wen model, incorporating
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a rate-dependent damping model, is shown appropriately to model the complicated nonlinear phenomena.
A two-stage estimation technique is proposed for the estimation of the present nonlinear model and an
effective experimental technique useful for actual multi-frequency displacement excitations is also sug-
gested. The present nonlinear model is shown to outperform the existing Bouc—Wen model in character-
izing complicated rate-dependent stick-slip phenomena.

Appendix A

The elements of the Jacobian matrix OR;/00; are as follows:

If Eq. (5) is used:
OR,
dc
OR;
om
aRk
Qo
OR;
op
OR,
oy
GRk N
=

If Eq. (6a)—(6¢) is used:

OR,
Oc
aRk_ e orpe ym—1 2/ . ym—1 . 2/ . . .

— = y[|x]™ sgn” () + mxe " In |y | sgn” (k) + x| In x| 0 (%))

om

= jék [m|5ck|m71 Sgl’lz().fk) + |5ck|m5(5ck)],
= ciplJxe | sgn® (k) + mlie " In | sgn® (i) + [xe| In e |0 ()],
= xka

= - |5Ck|\2k|n712ka

. n
= —xk|Zk| )

— [Blelze]" "z + i |ze "] In [z .
= e [mie """ sgn? (i) + "0 (kn)] + nlzawe]" il sgn (i) [Bl| + v sgn ()]

+ nelzmw "™ || sgn(ie) In [l [l | + 7t sgn(ie) sgn ()],
aRk
du
ORy . !

W = - |xk| ‘ZBW7k| ZBW. k>
aRk
oy
OR;

o [mxk”ZBW,kvilsz,k + pelzew|"] In |zpw il

= Xi»

. n
= —xk|ZBw,k| )
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